BETNESOL

Betamethasone Sodium Phosphate Injection IP

QUALITATIVE AND QUANTITATIVE COMPOSITION

Each ml contains:

Betamethasone Sodium Phosphate IP equivalent to Betamethasone 4 mg
Phenol IP (Preservative) 0.5 % w/v

PHARMACEUTICAL FORM

Solution for injection

CLINICAL PARTICULARS

Therapeutic Indications

BETNESOL Injection is indicated for the following conditions:

- Status asthmaticus.
- Acute allergic reactions, including anaphylactic reaction to drugs.
- Betamethasone sodium phosphate injection supplements the action of adrenaline.
- Severe shock arising from surgical or accidental trauma or overwhelming infection.
- Acute adrenal crisis caused by abnormal stress in Addison's disease, Simmond's disease, hypopituitarism following adrenalectomy, and when adrenocortical function has been suppressed by prolonged corticosteroid therapy.
- Soft tissue lesions such as tennis elbow, tenosynovitis and bursitis.
- Betamethasone sodium phosphate injection does not replace other forms of therapy for the treatment of shock and status asthmaticus.

Posology and Method of Administration

Populations

- **Systemic therapy in adults**

4 to 20 mg betamethasone (1 to 5 ml) administered by i.v. injection over half to one minute. This dose can be repeated three or four times in 24 hours, or as required, depending upon the condition being treated and the patient's response. Alternatively, betamethasone sodium phosphate injection may be given in an i.v. infusion. The same dose can be given by i.m. injection, but the response is likely to be less rapid, especially in shock. This dose can be
repeated three or four times in 24 hours, depending upon the condition being treated and the patient's response.

• **Systemic therapy in children**

Infants up to 1 year may be given 1 mg betamethasone intravenously; children aged 1 to 5 years, 2 mg; 6 to 12 years, 4 mg (1 ml). This dose can be repeated three or four times in 24 hours, depending upon the condition being treated and the patient's response.

• **Other Routes**

Local injections of 4 to 8 mg betamethasone sodium phosphate injection may be used when treating soft tissue lesions in adults; children may require smaller doses.

This dose can be repeated on two or three occasions depending on the patient's response.

Betamethasone sodium phosphate injection has also been administered subconjunctivally as a single injection of 0.5 to 1 ml.

Intrathecal use is not recommended.

Contraindications

• Systemic infections unless specific anti-infective therapy is employed.

• Live virus immunisation.

• *BETNESOL* Injection contains sodium metabisulphite (0.1% w/v) as a preservative and therefore should not be used to treat patients with known hypersensitivity to bisulphite, metabisulphite or any other component of the injection.

• *BETNESOL* Injection should not be injected directly into tendons.

Special Warnings and Special Precautions for Use

Visual disturbance has been reported by patients using systemic and/or topical corticosteroids. If a patient has blurred vision or other visual disturbances, consider evaluation of possible causes which may include cataract, glaucoma or central serous chorioretinopathy.

Administration of corticosteroids may impair the ability to resist and counteract infection e.g., where there is a previous history of tuberculosis; in addition clinical signs and symptoms of infection are suppressed.
Chickenpox is of particular concern since this normally minor illness may be fatal in immunosuppressed patients. Patients without a definite history of chickenpox should be advised to avoid close contact with chickenpox or herpes zoster and, if exposed, they (or the parents of such children) should seek urgent medical attention. Passive immunisation with varicella/zoster immunoglobulin (VZIG) is needed by exposed non-immune patients who are receiving systemic corticosteroids or who have used them within the previous three months. This should be given within ten days of exposure to chickenpox. If a diagnosis of chickenpox is confirmed, the illness warrants specialist care and urgent treatment. Corticosteroids should not be stopped and the dose may need to be increased.

Corticosteroid treatment is likely to reduce the response of the pituitary-adrenal axis to stress, and relative insufficiency may persist for up to a year after withdrawal of prolonged therapy.

Because of the possibility of fluid retention, care must be taken when corticosteroids are administered to patients with congestive heart failure.

Corticosteroids may worsen diabetes mellitus, osteoporosis, hypertension, glaucoma and epilepsy.

Care should be taken when there is a history of severe affective disorders (especially a previous history of steroid psychosis), previous steroid myopathy or peptic ulceration.

In patients with liver failure blood levels of corticosteroid may be increased, as with other drugs which are metabolised in the liver.

Systemic corticosteroids may cause growth retardation in infancy, childhood and adolescence. Treatment should be limited to the minimum dosage for the shortest possible time. In order to minimise suppression of the HPA axis and growth retardation consideration should be given to administration of a single dose on alternate days.

Treatment of elderly patients, particularly if long term, should be planned bearing in mind the more serious consequences of the common side effects of corticosteroids in old age, especially osteoporosis, diabetes, hypertension, susceptibility to infection and thinning of the skin.

When treatment is to be discontinued, the dose should be reduced gradually over a period of several weeks or months depending on the dosage and duration of the therapy.

Interaction with Other Medicaments and Other Forms of Interaction

Corticosteroids may reduce the effects of anticholinesterases in myasthenia gravis, cholecystographic x-ray media, salicylates and non-steroidal anti-inflammatory agents.

The effect of corticosteroids may be reduced by phenytoin, phenobarbitone, ephedrine and rifampicin.
The dosage of concomitantly administered anti-coagulants may have to be altered (usually decreased).

Oestrogens may potentiate the effects of glucocorticoids and dosage adjustments may be required if oestrogens are added to or withdrawn from a stable dosage regimen.

Betamethasone is metabolised by CYP3A4 and co-administration with CYP3A inhibitors (e.g. ritonavir, cobicistat, itraconazole) is expected to increase the systemic concentration of betamethasone.

Pregnancy and Lactation

The use of corticosteroids during human pregnancy and lactation requires that the benefits be weighed against the possible risks associated with the product or with any alternative therapy.

Pregnancy

There is insufficient evidence of safety in human pregnancy.

Administration of corticosteroids to pregnant animals can cause abnormalities of foetal development including cleft palate and intrauterine growth retardation. The relevance of this finding to human beings has not been established, however, patients should avoid extensive use in pregnancy.

Hypoadrenalism may occur in the neonate.

Lactation

Corticosteroids are excreted in small amounts in breast milk and infants of mothers taking pharmacological doses of corticosteroids should be monitored carefully for signs of adrenal suppression.

Effects on Ability to Drive and Use Machines

None identified.

Undesirable Effects

Prolonged treatment with corticosteroids in high dosage is occasionally associated with subcapsular cataract, skin thinning, osteoporosis, and glaucoma. In addition, any of the features of hypercortisolism, such as suppression of the HPA axis, may occur.

Aseptic osteonecrosis, particularly of the femoral head, may occur after prolonged corticosteroid therapy or after repeated short courses involving high dosage.
Peptic ulceration may develop, or be aggravated.

In children, prolonged therapy may retard growth.

In patients on long term therapy fluid and electrolyte balance may be altered.

Other rare side effects which have been reported include benign intracranial hypertension and psychic instability.

Overdose

Acute overdosage is very unlikely to occur, however in the case of chronic overdosage or misuse the features of hypercortisolism, may appear and in this situation the product should be discontinued slowly.

PHARMACOLOGICAL PROPERTIES

Pharmacodynamic Properties

Mechanism of action

Betamethasone is a synthetic analog of prednisolone which is more potent milligram per milligram than hydrocortisone.

Corticosteroids have multiple actions which produce antiinflammatory effects and result in their widespread use for treating diseases such as asthma. Historically, glucocorticoids were thought to decrease inflammation by stabilizing the lysosomes in neutrophils which prevented degranulation and the resulting inflammatory response. Additional research demonstrated that glucocorticoids also induce the antiinflammatory protein, lipocortin. This protein inhibits the enzyme phospholipase A2 which inhibits synthesis of prostaglandins and lipoxygenase products. Corticosteroids also bind to glucocorticoid receptors (GRs) located in the cytoplasm. After binding occurs, the activated GR moves from the cytoplasm to the nucleus where upregulation of antiinflammatory genes (eg, lipocortin, neutral endopeptidase, inhibitors of plasminogen activator) occurs. This effect results from binding of the GRs to glucocorticoid response elements (GREs). Corticosteroids also decrease the stability of selected messenger RNA molecules which alter gene transcription. Genes affected by this action include those involved in synthesis of collagenase, elastase, plasminogen activator, nitric oxide synthase, cyclooxygenase type II, cytokines, and chemokines.

During allergic reactions, four types of cytokines are believed to induce allergic cell recruitment. The cytokines, tumor necrosis factor-alpha and interleukine (IL)-1, nonspecifically activate the endothelium which promotes recruitment of neutrophils, eosinophils, mononuclear cells and basophils. Selective activation of the endothelium results from release of the cytokines, IL-4 and IL-13. These cytokines promote expression of vascular cell adhesion molecule-1 and binding of basophils, eosinophils, monocytes and lymphocytes
which have the leukocyte counterligand very late activation antigen-4. The third class of cytokines, IL-3, IL-5, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interferon gamma, cause prolonged eosinophil survival, increased adhesion molecule expression, and increased eosinophil degranulation and movement across the endothelial barrier. The last class of cytokines, the chemokines, have chemotactic properties which induce cell migration and activate selected cell types. Corticosteroids are effective inhibitors of the described cytokines and thus reduce the inflammatory response elicited by these cytokines.

Pharmacokinetic Properties

Corticosteroids are rapidly distributed to all body tissues. They cross the placenta to varying degrees and may be distributed in small amounts into breast milk.

Most corticosteroids in the circulation are extensively bound to plasma proteins, mainly to globulin and less so to albumin. The corticosteroid-binding globulin (transcortin) has high affinity but low binding capacity, while albumin has low affinity but large binding capacity. The synthetic corticosteroids are less extensively protein bound than hydrocortisone (cortisol). They also tend to have longer half-lives.

Corticosteroids are metabolised mainly in the liver but also in other tissues, and are excreted in the urine. The slower metabolism of the synthetic corticosteroids with their lower protein-binding affinity may account for their increased potency compared with the natural corticosteroids.

Preclinical Safety Data

No relevant text.

PHARMACEUTICAL PARTICULARS

List of Excipients

Phenol, Disodium Edetate, Sodium Metabisulphite, Sodium Chloride, Sodium Hydroxide, Water for Injection.

Incompatibilities

No incompatibilities have been identified.

Shelf Life

The expiry date is indicated on the label and packaging.

Special Precautions for Storage
Store protected from light at a temperature not exceeding 25°C.

Keep out of reach of children.

Nature and Specification of Container

Ampoules in blister pack in a carton.

Instructions for Use / Handling

Refer section *Posology and Method of Administration* for details.

For further information please contact:
GlaxoSmithKline Pharmaceuticals Limited.

Registered Office:
Dr. Annie Besant Road, Worli
Mumbai 400 030, India.

Trade marks are owned by or licensed to the GSK group of companies.

Version: BET-INJ/PI/IN/2018/01 dated 16 July 2018

Based on Betamethasone sodium phosphate GDS Version 08 dated 03 April 2018.